

Datasheet TEC Controller TEC-1161-4A TEC Controller TEC-1161-10A

Support / First steps

Meerstetter Engineering provides technical support for all products and helps you to integrate a product into your solution. Most of your questions should be solved by reading the provided <u>user manuals</u> of the corresponding product or the <u>FAQ</u> (frequently asked questions).

For further help or if you have any other questions please do not hesitate to contact us. We are happy to help you. You can contact us by email support@meerstetter.ch.

Meerstetter's product family compatibility

The Meerstetter LDD and TEC-Family have been developed to work along with each other. They share the same platform bus, communication protocol and hardware architecture. See Table for an Overview over the LDD- and TEC-Families.

LDD-Family		
LDD-1321	0-1.5 A / 0-14 V	CW, Add on TEC Controller available
LDD-1301	0-20 A / 0.5-45 V	1 ms - CW
LDD-1303	0-20 A / 1-120 V	1 ms - CW
LDD-1137	0-75 A / 0-70 V	0.5 µs - CW, modulated, QCW and pulsed modes
LDD-1124-SV	0-1.5 A / 0-15 V	1 μs - CW, modulated, QCW and pulsed modes
LDD-1121-SV	0-15 A / 0-15 V	1 μs - CW, modulated, QCW and pulsed modes
LDD-1125-HV	0-30 A / 0-27 V	1 μs - CW, modulated, QCW and pulsed modes
TEC-Family		
TEC-1092	±1.2 A / ±9.6 V	Micro, single channel
TEC-1091	±4 A / ±21 V	Small, single channel
TEC-1089-SV	±10 A / ±21 V	Medium, single channel
TEC-1162	±5 A / ±56 V	Medium-high, single channel
TEC-1090-HV	±16 A / ±30 V	Large, single channel
TEC-1163	±25 A / ±56 V	Extra-large, single channel
TEC-1161-4A	2 x (±4 A / ±21 V)	Small, dual channel
TEC-1161-10A	2 x (±10 A / ±21 V)	Medium, dual channel
TEC-1122-SV	2 x (±10 A / ±21 V)	Medium, dual channel
TEC-1166	2 x (±5 A / ±56 V)	Medium-high, dual channel
TEC-1123-HV	2 x (±16 A / ±30 V)	Large, dual channel
TEC-1167	2 x (±25 A / ±56 V)	Extra-large, dual channel

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

TEC-1161 HW v1.20 / v1.21

Two Channel OEM TEC Controller

Description:

The TEC-1161 is a specialized TEC Controller / power supply able to precision-drive two Peltier elements.

Each channel features a true bipolar DC current source for cooling / heating, six temperature monitoring inputs (2x high resolution, 4x low resolution) and intelligent PID control with auto tuning. The TEC-1161 is fully digitally controlled, it's hard- and firmware offer numerous communication and safety options.

The included PC-Software allows configuration, control, monitoring and live diagnosis of the TEC Controller via USB and RS485. All parameters are saved to non-volatile memory. Saving can be disabled for bus operation.

For the most straightforward applications, only a power supply, Peltier elements and at least one temperature sensor need to be connected to the TEC-1161. After power-up the unit will operate according to preconfigured values. (In stand-alone mode no control interface is needed.)

The TEC-1161 can handle either Pt100, Pt1000, NTC or Voltage temperature probes. For highest precision and stability applications a Pt100 / 4-wire input configuration is recommended. Analog measurement circuit is factory calibrated.

Auxiliary temperature inputs allow the connection of NTC probes that are located on the heat sinks of the Peltier elements. This additional data is used to compensate for parasitic thermal conduction of Peltier elements. Also, it allows the control of external heat sink cooling fans.

The heating and cooling power is optimized by proprietary thermal management routines based on power balance models (for Peltier elements and resistive heaters).

The TEC-1161 two independent channels may also be operated in parallel, to either drive two individual or one common load (current doubling).

Further functionality includes: Smooth temperature ramping, thermal stability indication and auto gain (NTC probes). The PC-Software allows data logging and configuration import/export.

Features

Input Characteristics:

• DC Input Voltage: 5 to 24 V

Output Characteristics:

Voltage: up to ± 21 V

• Current: up to ± 10 A

Main Features:

- Temperature Sensor Types: Pt100, Pt1000, NTC, Voltage
- Temperature Precision / Stability: <0.01 °C
- Temperature Control & Measurement Frequency: 1 Hz, 10 Hz, 90 Hz
- Communication bus compatible
- Configuration and monitoring with Service Software
- PCB mountable version available

Operation Modes:

- Stand-alone operation
- Remote-controlled over USB, CAN, RS485, I/O
- Script-controlled over lookup table (thermal cycling)

Driver Modes:

- DC power supply (bipolar)
- Temperature control: PID settings, auto tuning, optional cool/heat-only or resistor heating modes

Data Interfaces:

- USB
- RS485
- CANopen CiA 301

General Purpose I/O Features:

- Configurable as input to control TEC-1161 (Enable, Temperature up / down etc.)
- Configurable as output to monitor TEC-1161 (Error Indication, Temperature Stable Indication etc.)

Special Requirements / More Information:

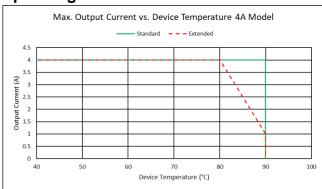
Please contact us for additional information or customization.

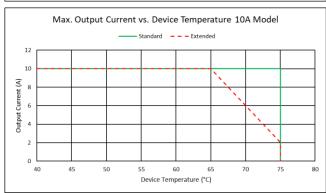
Important Note:

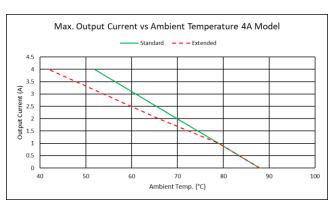
1

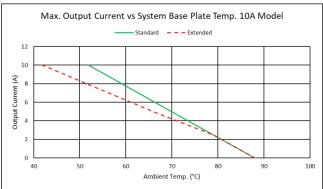
The following features will be activated with an incoming firmware update, but are not yet useable:

- GPIO9 and GPIO10
- Low Resolution temp. measurement 3 and 4

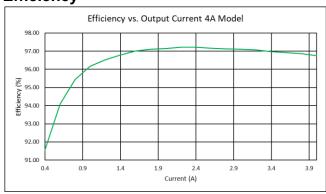

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

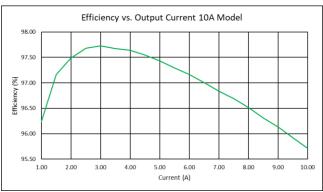

TEC-1161 HW v1.20 / v1.21


Absolute Maximum F	Ratings
Supply voltage (DC)	25.5 V


Operating Ratings	
Temperature	-40 – 90 °C
Humidity	5 – 95 %, non-condensing

Operating Characteristics





Standard or Extended Device Temperature Mode can be set as software setting.

The right Diagram shows the situation with an external 3.3Ω resistor (4A Model) or a 1.65Ω resistor (10A Model). No forced air flow was present.

Efficiency

The Efficiency measurements were done at 21V output voltage and a device temperature of 60°C. The ambient temperature was 23°C, no forced air flow was present.

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

TEC-1161 HW v1.20 / v1.21

Electrical Characteristics 4A Model

Unless otherwise noted: T_A = 25 °C, U_{IN} = 24 V, R_{load} = 3.3 Ω

Symbol Parameter Te		Test Conditions	Min	Тур	Max	Units
DC Power S	DC Power Supply Input:					
U _{IN}	Supply voltage		4.9		24	V
U _{IN} Ripple	Ripple tolerance	UIN never below UIN min or above UIN max			300	mV_{PP}
Output:						
louт	Bipolar current swing				±4	Α
Uouт	Bipolar voltage swing	U _{OUT} is maximum ~0.9 · U _{IN} ; See diagram			±21	V
Uout Ripple	Voltage ripple	@ 4 A			100	mV_{PP}
System Cha	racteristics:					
η _{50%}	Power efficiency	@ 50 % load (10.5 V, 4 A)		94		%
η100%	Power efficiency	@ 100 % load (21 V, 4 A)		96		%
Output Mon	itoring (IOUT Resolution	is 1.46 mA; Uout Resolution is 6.1 mV)				
Iout Read	Precision	@ 3.8 A		1	5	%
Uout Read	Precision	@ 15.0 V		1	3	%

Electrical Characteristics 10A Model

Unless otherwise noted: T_A = 25 °C, U_{IN} = 24 V, R_{load} = 1.65 Ω

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
DC Power S	DC Power Supply Input:					
U _{IN}	Supply voltage		4.9		24	V
U _{IN} Ripple	Ripple tolerance	UIN never below UIN min or above UIN max			300	mV_{PP}
Output:						
Гоит	Bipolar current swing				±10	Α
U _{OUT}	Bipolar voltage swing	U _{OUT} is maximum ~0.9 · U _{IN} ; See diagram			±21	V
U _{OUT} Ripple	Voltage ripple	@ 10 A			350	mV_{PP}
System Cha	racteristics:					
η50%	Power efficiency	@ 50% load (10.5 V, 10 A)		93		%
η100%	Power efficiency	@ 100% load (21 V, 10 A)		95		%
Output Mon	itoring (IOUT Resolution	is 3.5 mA; U _{OUT} Resolution is 6.1 mV)				
louт Read	Precision	@ 9.8 A		1	5	%
Uout Read	Precision	@ 15.0 V		1	3	%

Output Safety Characteristics

Unless otherwise noted: $T_A = 25$ °C, $U_{IN} = 12$ V

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units	
Output Stage Protection Delays:							
toff Short c	ircuit	Full load condition		10	30	μS	
toff Power	toff Power system limits Current and voltage limits 2		200	μS			
toff Power system limits Current and voltage limits 200 µs Output Stage Current Supervision: (If the OUT+ and OUT- currents differ too much, an error is generated)							
IOUT_DIFF	Error threshold			120		mΑ	

High Resolution Temperature Measurement Characteristics (NTC Probes)

NTC thermistor resistive input characteristics translate into temperature ranges valid for only one type of NTC probe. Below example is given in the case of an NTC $B_{25/100}$ 3988K R_{25} 10k temperature sensor.

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
D	ADC Auto Gain		73		1M	Ω
RHR, RANGE	PGA = 1 or 8 or 32		1	94.3 to -55	.5	°C

Document Number: 5231F (16 January 2024)

R_{OBJ, RANGE} is resistance range of the NTC sensor

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

TEC-1161 HW v1.20 / v1.21

High Resolution Temperature Measurement Characteristics (Pt100 and Pt1000 Probes)

Measurement configuration = 23 bit / 4-wire / unshielded cable <50 mm

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
T _{OB} J, RANGE	Range	Range is extendable upon request Extended measurement range is -193°C +787°C	-220		+200	ů
T _{OBJ} , PREC	Precision	(EN 60751 / IEC 751)		0.005		°C
T _{OBJ, COEFF}	Temp. Coefficient	Relative to device temperature			1.6m	°C/K
Tobj, noise	Value Noise	Reference measurement fluctuations while output stage operating @70% load		0.005		°C
T _{OBJ} , REP	Repeatability	Repeated measurements of reference resistors after up to 3 days		0.008		°C

High Resolution Temperature Monitoring Configuration (Voltage Measurement VIN1/2)

Sensors with linear Voltage/Temperature output.

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
VSENS, DIFF	Range	Differential Input voltage Temperature range depends on sensor used	-2.039		2.039	V
V _{OBJUx, ABS}	Range	Absolute Input voltage	-0.1		5.1	V

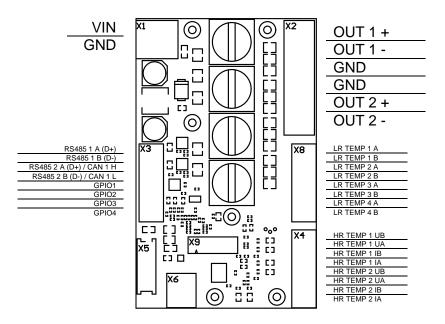
Low Resolution Temperature Measurement Characteristics (NTC only) $T_A = 25$ °C, measurement configuration = 12 bit / 2-wire / unshielded cable <50 mm, °T probe = NTC $B_{25/100}$ 3988K R_{25} 10k

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
Б	Danasa		50		49781	Ω
RLR, RANGE	Range	Corresponding temperature range:	214 to -8.1		°C	

General Purpose Digital I/O Characteristics (GPIO1 ... GPIO10)

Unless otherwise noted: T_A = 25 °C

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Input Char	racteristics:	•				_
U _{IH}	Logic high input threshold		2.38			V
U _{IL}	Logic low input threshold				0.93	V
U _{IMAX}	Maximum input voltage		-0.5		5.5	V
Output Ch (Microprocess	aracteristics:					
Uон	Logic high output voltage	Output current 8 mA	2.8		3.3	V
UoL	Logic low output voltage	Input current 8 mA			0.4	V
Zout	Output Impedance		110	120	150	Ω
louт	Output Sink or Source Current			±8	±20	mA
ESD Prote (Between Pro	ection: cessor and Connector)					
UPP	ESD discharge	IEC61000-4-2		18		kV
	Series resistance		85	100	115	Ω


Auxiliary Connector X5 Power Supply Output Characteristics

Unless otherwise noted: T_A = 25 °C

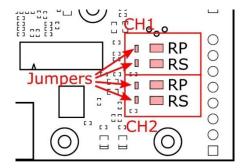
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units		
Input Characteristics:								
Uouт	Output voltage	Output current 50 mA	4.4	4.5	5	V		
louт	Output current		0	150	200	mA		
U _{IMAX}	Maximum input voltage		-0.5		5.5	V		

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

Pin Configuration Screw Connectors TOP View

Matching Receptacles for the PIN Configuration

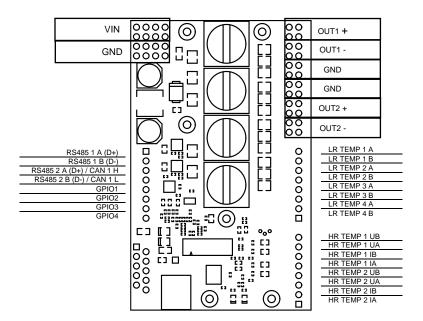
The following receptacles can be used for the TEC-1161 in the -PIN Configuration: Manufacturer: MILL-MAX MANUFACTURING Part Number: 801-43-050-10-001000 The receptacles need to be broken up into the appropriate length.

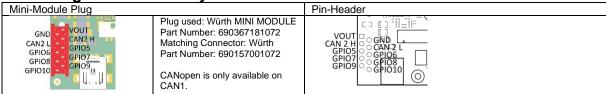

Screw Connector Specifications X1 and X2

Parameter	Min	Тур	Max	Units
Wire Size (Mechanical Limit, current carrying capacity not considered)	0.05		2.5	mm²
Torque		0.5	0.6	Nm
Stripping Length		6.5		mm

Screw Connector Specifications X3, X4 and X8

Parameter	Min	Тур	Max	Units
Wire Size (Mechanical Limit, current carrying capacity not considered)	0.05		0.5	mm ²
Torque		0.1		Nm
Stripping Length		5		mm

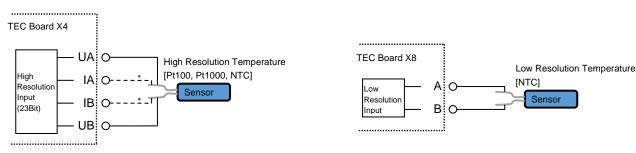

Temperature Sensor Connection X4 and X8


The jumpers are used for the 2/4 Wire configuration. For the values of RS and RP please refer to the TEC-Controller User Manual.

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

Pin Configuration Pinheader Connectors TOP View

Pin Configuration Auxiliary IO Connector X5


Mini USB Connector X6

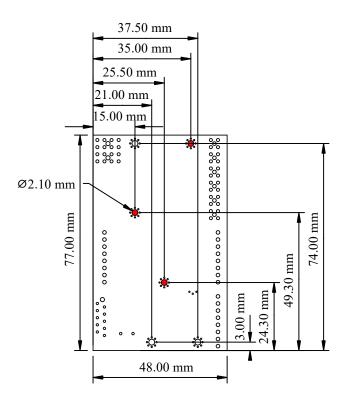
The Mini USB Connector X6 can be used to communicate with the TEC Controller using the meCom communications protocol or the Service Software. It is electrically isolated.

Display Connector X9

The Connector X9 can be used to connect one of the OLED Displays available from Meerstetter (DPY1113, DPY1114 or DPI1115)

Temperature Sensor Connection X4 and X8

* In case of Pt100 or Pt1000, use 4 wires to connect the High Resolution Temperature Sensor


Further information can be found here.

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

Dimensions

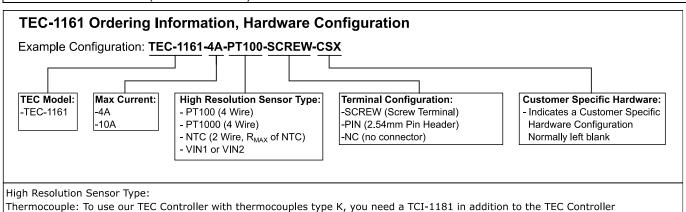
Top View

The holes marked in red are used to mount the aluminum baseplate for the 10A version and are therefore not available for mounting purposes in this version.

HW v1.20 / v1.21

Operation-Modes / Theory of Operation

The TEC-1161 is an OEM precision TEC Controller that is available with Screw Terminals or as a PCB mountable device. Its basic operation status is visually indicated by on-board green and red LEDs and their blinking pattern.


SCREW Screw terminal equipped Version

PIN PCB mountable Version

Status information can be polled at any time by industry standard RS485 connection or by USB (see box below). The TEC-1161 can also operate in a remotely controlled manner, with parameters adjusted on the fly. The TEC-Controller has Scripting capability by sequential lookup table read-out.

Configured as a DC power-supply, the TEC-1161 can handle current and voltage settings. In the remote-control case, temperature data may be passed on to be processed by the host.

Configurable parameters further include sensor linearization (Pt100 / Pt1000) and Steinhart-Hart modeling (NTC), temperature acquisition hardware calibration, Peltier element modeling, PID controller auto tuning, nominal temperature ramping, current, voltage and temperature limits, error thresholds, etc. Please refer to the TEC Controller User Manual (Document 5216) for further information.

Meerstetter Engineering GmbH Schulhausgasse 12 3113 Rubigen, Switzerland

with a VIN1 Object Sensor Type configuration.

Phone: +41 31 529 21 00 Email: contact@meerstetter.ch Website: www.meerstetter.ch

Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions.